Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Purpose or research. The aim of the study is to ensure the safe operation of robotics by developing methods, approaches and algorithms for information processing, and describing their functioning.Methods. The paper proposes an approach to estimation allowed signal/noise ratio (SNR) for robotic LiDARs based on the predetermined probability of occurrence of «false alarm» under unintended influences. The synthesized probabilistic approach is based on the physical fundaments of infrared radiation, and the Bayesian theory using the Neyman-Pearson criterion. The feature of the proposed approach is the use of the given threshold of «false alarm» occurrence, and the probability of occurrence of interference in the analytical apparatus, as well as consideration of the characteristics of photodetectors. This allows expressing analytically and calculating the value of the allowed SNR when stabilizing the level of «false alarms» against background noise caused by this type of interference.Results. The formed and presented dependencies can be used as one of the operating characteristics in the development and selection of optoelectronic system of LiDAR’s measurement system. Based on the fixed value of «false alarm», and the resulting graphical expression of the operating characteristic (obtained characteristics) it is possible to choose a LiDARs system with necessary technical parameters.Conclusion. The probabilistic approach and the corresponding algorithm for selecting the threshold SNR value based on the Neyman-Pearson criterion were developed. The approach allows minimizing the probability of «ignoring» the object when scanning, since the probability of «false alarm» does not exceed the given threshold value. Mathematical and methodological support for the design of LiDARs is presented, taking into account a priori estimation of the allowed SNR value, and the probability of reflected pulse detection, without preliminary estimates of probabilistic characteristics of object detection. The presented algorithm has a set of raw data (in the form of the values of the received signal with a noise component) as an input. Its output is represented by a set of error probability dependencies for different SNR thresholds.
Purpose or research. The aim of the study is to ensure the safe operation of robotics by developing methods, approaches and algorithms for information processing, and describing their functioning.Methods. The paper proposes an approach to estimation allowed signal/noise ratio (SNR) for robotic LiDARs based on the predetermined probability of occurrence of «false alarm» under unintended influences. The synthesized probabilistic approach is based on the physical fundaments of infrared radiation, and the Bayesian theory using the Neyman-Pearson criterion. The feature of the proposed approach is the use of the given threshold of «false alarm» occurrence, and the probability of occurrence of interference in the analytical apparatus, as well as consideration of the characteristics of photodetectors. This allows expressing analytically and calculating the value of the allowed SNR when stabilizing the level of «false alarms» against background noise caused by this type of interference.Results. The formed and presented dependencies can be used as one of the operating characteristics in the development and selection of optoelectronic system of LiDAR’s measurement system. Based on the fixed value of «false alarm», and the resulting graphical expression of the operating characteristic (obtained characteristics) it is possible to choose a LiDARs system with necessary technical parameters.Conclusion. The probabilistic approach and the corresponding algorithm for selecting the threshold SNR value based on the Neyman-Pearson criterion were developed. The approach allows minimizing the probability of «ignoring» the object when scanning, since the probability of «false alarm» does not exceed the given threshold value. Mathematical and methodological support for the design of LiDARs is presented, taking into account a priori estimation of the allowed SNR value, and the probability of reflected pulse detection, without preliminary estimates of probabilistic characteristics of object detection. The presented algorithm has a set of raw data (in the form of the values of the received signal with a noise component) as an input. Its output is represented by a set of error probability dependencies for different SNR thresholds.
The paper proposes an approach to assessing the allowed signal-to-noise ratio (SNR) for light detection and ranging (LiDAR) of unmanned autonomous vehicles based on the predetermined probability of false alarms under various intentional and unintentional influencing factors. The focus of this study is on the relevant issue of the safe use of LiDAR data and measurement systems within the “smart city” infrastructure. The research team analyzed and systematized various external impacts on the LiDAR systems, as well as the state-of-the-art approaches to improving their security and resilience. It has been established that the current works on the analysis of external influences on the LiDARs and methods for their mitigation focus mainly on physical (hardware) approaches (proposing most often other types of modulation and optical signal frequencies), and less often software approaches, through the use of additional anomaly detection techniques and data integrity verification systems, as well as improving the efficiency of data filtering in the cloud point. In addition, the sources analyzed in this paper do not offer methodological support for the design of the LiDAR in the very early stages of their creation, taking into account a priori assessment of the allowed SNR threshold and probability of detecting a reflected pulse and the requirements to minimize the probability of “missing” an object when scanning with no a priori assessments of the detection probability characteristics of the LiDAR. The authors propose a synthetic approach as a mathematical tool for designing a resilient LiDAR system. The approach is based on the physics of infrared radiation, the Bayesian theory, and the Neyman–Pearson criterion. It features the use of a predetermined threshold for false alarms, the probability of interference in the analytics, and the characteristics of the LiDAR’s receivers. The result is the analytical solution to the problem of calculating the allowed SNR while stabilizing the level of “false alarms” in terms of background noise caused by a given type of interference. The work presents modelling results for the “false alarm” probability values depending on the selected optimality criterion. The efficiency of the proposed approach has been proven by the simulation results of the received optical power of the LiDAR’s signal based on the calculated SNR threshold and noise values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.