A pressurized solar reactor for effecting the thermochemical gasification of carbonaceous particles driven by concentrated solar energy is modeled by means of a reacting two-phase flow. The governing mass, momentum, and energy conservation equations are formulated and solved numerically by finite volume computational fluid dynamics (CFD) coupled to a Monte Carlo radiation solver for a nongray absorbing, emitting, and scattering participating medium. Implemented are Langmuir–Hinshelwood kinetic rate expressions and size-dependent properties for charcoal particles undergoing shrinkage as gasification progresses. Validation is accomplished by comparing the numerically calculated data with the experimentally measured temperatures in the range 1283–1546 K, chemical conversions in the range 32–94%, and syngas product H2:CO and CO2:CO molar ratios obtained from testing a 3 kW solar reactor prototype with up to 3718 suns concentrated radiation. The simulation model is applied to identify the predominant heat transfer mechanisms and to analyze the effect of the solar rector's geometry and operational parameters (namely: carbon feeding rate, inert gas flowrate, solar concentration ratio, and total pressure) on the solar reactor's performance indicators given by the carbon molar conversion and the solar-to-fuel energy efficiency. Under optimal conditions, these can reach 94% and 40%, respectively.