2019
DOI: 10.1016/j.scitotenv.2018.11.086
|View full text |Cite
|
Sign up to set email alerts
|

A novel spatiotemporal convolutional long short-term neural network for air pollution prediction

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

5
146
0
4

Year Published

2019
2019
2023
2023

Publication Types

Select...
7
1
1

Relationship

1
8

Authors

Journals

citations
Cited by 329 publications
(155 citation statements)
references
References 52 publications
5
146
0
4
Order By: Relevance
“…In recent years, one of the most prevalent types of artificial intelligence algorithms (i.e., deep learning methods) has achieved great success in various real-world applications, including image classification, speech recognition, time series prediction, natural language processing and so on (LeCun et al, 2015;Chan et al, 2015;Hinton et al, 2012;Wen et al, 2019;Collobert and Weston, 2008;Li et al, 2016Li et al, , 2018. Following this trend, researchers have shifted their focus towards learning-based approaches and, more specifically, to deep neural networks (Qi et al, 2016;Su et al, 2015;Qi et al, 2017a,b) for learning 3D local descriptors.…”
Section: Introductionmentioning
confidence: 99%
“…In recent years, one of the most prevalent types of artificial intelligence algorithms (i.e., deep learning methods) has achieved great success in various real-world applications, including image classification, speech recognition, time series prediction, natural language processing and so on (LeCun et al, 2015;Chan et al, 2015;Hinton et al, 2012;Wen et al, 2019;Collobert and Weston, 2008;Li et al, 2016Li et al, , 2018. Following this trend, researchers have shifted their focus towards learning-based approaches and, more specifically, to deep neural networks (Qi et al, 2016;Su et al, 2015;Qi et al, 2017a,b) for learning 3D local descriptors.…”
Section: Introductionmentioning
confidence: 99%
“…Bunların yanında finans piyasalarında hisse senetlerinin fiyat tahminleri LSTM algoritmasının performansı incelenmiştir [16,17]. Son yıllarda literatürde, hava kirliliği tahmini, su kalitesinin tahmini ve ozon gazları yoğunluğunun tahmini gibi çevresel zaman serisi problemlerinde tahmin doğrululuğun yüksekliğinden dolayı LSTM yaklaşımı tercih edilmiştir [3,18]. Qing ve Niu [19] yaptıkları çalışmada, saatlik güneş ışınımı değerlerinin tahmini LSTM yöntemi kullanmışlar ve girdi verileri olarak aynı zaman dilimine ait hava tahmin değerleri kullanılmıştır.…”
Section: İlgi̇li̇ çAlişmalar (Related Work)unclassified
“…Yapay zekâ alanında son yıllarda üzerinde durulan yeni bir makine öğrenme yöntemi olan derin öğrenme, büyük miktarda verilerden etkili özellik temsillerinin öğrenilmesine katkı sağlayan etkin algoritmalar sunmaktadır [3]. Derin öğrenme modelleri, özellikle hisse senedi fiyat tahmini, hava kirliliği tahmini ve enerji fiyatları tahmini gibi zaman serileri tahmini problemlerinde yoğun bir şekilde kullanılmaktadır.…”
Section: Gi̇ri̇ş (Introduction)unclassified
“…In recent years, LSTM algorithms have achieved good research results in the field of simulation and prediction of the evolution process of air pollutant particle concentration, and the representative algorithms include: LSTM method and evaluation algorithm [18], ensemble-LSTM algorithm [19], CNN-LSTM algorithm [20], LSTM-FC algorithm [21]; LSTM algorithms based on air pollutant particle concentration characteristics: GC-LSTM algorithm [22], spatiotemporal convolutional LSTM algorithm [23]; LSTM algorithm based on deep learning: DL-LSTM algorithm [24], Multi-output DL-LSTM algorithm [25]; Deep DL-LSTM algorithm [26]. Algorithms of this type took the LSTM algorithm as the core, starting from the structural characteristics of the research object, they improved the LSTM algorithm to effectively simulate the evolution process of the concentration of atmospheric pollutant particles and improve the prediction performance of the algorithm, moreover, based on data analysis, they introduced CNN, FC, GC, DL, and other algorithms to optimize the input data and preliminarily explored the spatial correlation of the evolution process of particle concentration.…”
Section: Introductionmentioning
confidence: 99%