2019
DOI: 10.48084/etasr.3173
|View full text |Cite
|
Sign up to set email alerts
|

A Novel Summarization-based Approach for Feature Reduction Enhancing Text Classification Accuracy

Abstract: Automatic summarization is the process of shortening one (in single document summarization) or multiple documents (in multi-document summarization). In this paper, a new feature selection method for the nearest neighbor classifier by summarizing the original training documents based on sentence importance measure is proposed. Our approach for single document summarization uses two measures for sentence similarity: the frequency of the terms in one sentence and the similarity of that sentence to other sentences… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
4
0
1

Year Published

2020
2020
2023
2023

Publication Types

Select...
4
3
1

Relationship

0
8

Authors

Journals

citations
Cited by 18 publications
(5 citation statements)
references
References 13 publications
0
4
0
1
Order By: Relevance
“…Entretanto, pouco ainda foi explorado acerca da classificac ¸ão de textos com o auxílio de técnicas de sumarizac ¸ão. Em [Rahamat Basha et al 2019] é proposto um novo método de selec ¸ão de características para o classificador KNN (K-nearest neighbor) resumindo os documentos de treinamento originais com base na medida de importância da sentenc ¸a. A abordagem para sumarizac ¸ão de documento único usa duas medidas para similaridade de sentenc ¸as: a frequência dos termos em uma sentenc ¸a e a similaridade dessa sentenc ¸a com outras sentenc ¸as.…”
Section: Fundamentac ¸ãO Teórica E Trabalhos Correlatosunclassified
“…Entretanto, pouco ainda foi explorado acerca da classificac ¸ão de textos com o auxílio de técnicas de sumarizac ¸ão. Em [Rahamat Basha et al 2019] é proposto um novo método de selec ¸ão de características para o classificador KNN (K-nearest neighbor) resumindo os documentos de treinamento originais com base na medida de importância da sentenc ¸a. A abordagem para sumarizac ¸ão de documento único usa duas medidas para similaridade de sentenc ¸as: a frequência dos termos em uma sentenc ¸a e a similaridade dessa sentenc ¸a com outras sentenc ¸as.…”
Section: Fundamentac ¸ãO Teórica E Trabalhos Correlatosunclassified
“…Polyanskaya and Brillet (2023) demonstrates the superiority of GPT-3.5 Turbo over BERT for En-glish dataset which was enhanced by the translated French dataset. (Winatmoko and Septiandri, 2023) explores ST5 and SBERT for generating embeddings and in Mishra (2023), fine-tuning Llama2 on the English dataset with prompts detailing the classification criteria gives the best result, on both the English and French datasets. The introduces an ensemble learning method with mBERT, FlauBERT, ALBERT, and MLP models, incorporating feature representations (LSA and TF-IDF), demonstrating superior performance with early fusion ensemble across all four languages.…”
Section: English and Frenchmentioning
confidence: 99%
“…LIPI and FinNLU also joined the Japanese subtask with the proposed methods, and SPEvFT (Mishra, 2023) applies prompt engineering to Japanese articles.…”
Section: Chinese and Japanesementioning
confidence: 99%
“…Techniques utilizing summarization for classification also fall within this category (e.g. Basha et al, 2019).…”
Section: Related Workmentioning
confidence: 99%