Highly reactive integrated material systems have recently gained attention, as they promise a feasible tool for heterogeneous integration of micro electromechanical systems. As integrated energy sources they can be used to join heterogeneous materials without applying too much thermal stress to the whole device. An alternative approach is proposed, comprising a single layer of a reactive nanocomposite made of intermixed metal nanoparticles, instead of multilayer systems. In this study the development of the reactive nanocomposite from choice of materials through processing steps, handling and application methods are described. Eventually the results of the experiments upon the reactivity of the nanocomposites and the feasibility for bonding applications are presented. Analysis of the composites was performed by phase-analysis using x-ray diffraction and reaction propagation analysis by high-speed imaging. Composition of products was found to vary with initial particle sizes. Beside of other phases, the dominant phase was intermetallic NiAl.