Abstract:In-situ liquid-phase hydrogenation of m-chloronitrobenzene (m-CNB) based on aqueous-phase reforming (APR) of ethanol and catalytic hydrogenation was carried out over Fe-modified Pt/carbon nanotubes (CNTs) catalysts. The effects of Pt loading over CNTs and Fe modification on the catalytic performance of Pt/CNTs catalysts were studied. In-tube loading of Pt particles, compared with out-tube loading, considerably improved the catalytic activity. With in-tube loading, Fe-modified Pt/CNTs catalysts further improved the m-CNB in-situ hydrogenation performance. After Fe modification, Pt-Fe/CNTs catalysts formed, inside CNTs, a Pt-Fe alloy and iron oxides, which both improved catalytic hydrogenation performance and significantly enhanced ethanol APR hydrogen producing performance, thereby increasing the m-CNB in-situ hydrogenation reactivity.