Network on Chip (NoC) has emerged as a potential substitute for the communication model in modern computer systems with extensive integration. Among the numerous design challenges, application mapping on the NoC system poses one of the most complex and demanding optimization problems. In this research, we propose a hybrid improved whale optimization algorithm with enhanced genetic properties (IWOA-IGA) to optimally map real-time applications onto the 2D NoC Platform. The IWOA-IGA is a novel approach combining an improved whale optimization algorithm with the ability of a refined genetic algorithm to optimally map application tasks. A comprehensive comparison is performed between the proposed method and other state-of-the-art algorithms through rigorous analysis. The evaluation consists of real-time applications, benchmarks, and a collection of arbitrarily scaled and procedurally generated large-task graphs. The proposed IWOA-IGA indicates an average improvement in power reduction, improved energy consumption, and latency over state-of-the-art algorithms. Performance based on the Convergence Factor, which assesses the algorithm’s efficiency in achieving better convergence after running for a specific number of iterations over other efficiently developed techniques, is introduced in this research work. These results demonstrate the algorithm’s superior convergence performance when applied to real-world and synthetic task graphs. Our research findings spotlight the superior performance of hybrid improved whale optimization integrated with enhanced GA features, emphasizing its potential for application mapping in NoC-based systems.