Background
Although pneumococcal conjugate vaccines (PCVs) effectively prevent invasive pneumococcal disease (IPD), serotype replacement has occurred.
Objectives
We studied the pangenome, antibiotic resistance mechanisms and presence of mobile elements in predominant non-PCV13 serotypes causing adult IPD after PCV13 vaccine introduction in Spain.
Methods
We conducted a multicentre study comparing three periods in six Spanish hospitals and analysed through whole genome sequencing representative strains collected in the pre-PCV13, early-PCV13 and late-PCV13 periods.
Results
Among 2197 cases of adult IPD identified, 110 pneumococci expressing non-PCV13 capsules were sequenced. Seven predominant serotypes accounted for 42.6% of IPD episodes in the late-PCV13 period: serotypes 8 (14.4%), 12F (7.5%), 9N (5.2%), 11A (4.1%), 22F (3.9%), 24F (3.9%) and 16F (3.6%). All predominant non-PCV13 serotypes were highly clonal, comprising one or two clonal complexes (CC). In general, CC538, CC4048, CC3016F, CC43322F and CC669N, related to predominant non-PCV13 serotypes, were antibiotic susceptible. CC15611A was associated with resistance to co-trimoxazole, penicillin and amoxicillin. CC23024F was non-susceptible to penicillin and resistant to erythromycin, clindamycin, and tetracycline. Six composite transposon structures of the Tn5252-family were found in CC23024F, CC98912F and CC3016F carrying different combinations of erm(B), tet(M), and cat. Pangenome analysis revealed differences in accessory genomes among the different CC, with most variety in CC3016F (23.9%) and more conservation in CC15611A (8.5%).
Conclusions
We identified highly clonal predominant serotypes responsible for IPD in adults. The detection of not only conjugative elements carrying resistance determinants but also clones previously associated with vaccine serotypes (CC15611A and CC23024F) highlights the importance of the accessory genome.