2023
DOI: 10.1177/09544100221150284
|View full text |Cite
|
Sign up to set email alerts
|

A novel UAV-integrated deep network detection and relative position estimation approach for weeds

Abstract: This paper aims at presenting a novel monocular vision–based approach for drones to detect multiple type of weeds and estimate their positions autonomously for precision agriculture applications. The methodology is based on classifying and detecting the weeds using a proposed deep neural network architecture, named fused-YOLO on the images acquired from a monocular camera mounted on the unmanned aerial vehicle (UAV) following a predefined elliptical trajectory. The detection/classification is complemented by a… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 33 publications
0
0
0
Order By: Relevance