This paper presents an electrically controllable reflective broadband linear polarization (LP) converter based on liquid crystals (LCs) for cross-polarization conversion (CPC) in the terahertz frequency range. The proposed structure achieves a high polarization conversion ratio (PCR) exceeding 0.9 within the frequency range of 236.8 - 269.6 GHz. A vital feature of this design is the dynamic control of polarization conversion by re-orienting the nematic liquid crystal molecules through voltage bias switching between ‘on’ and ‘off’ states, allowing for precise manipulation of cross-polarized and co-polarized reflected waves. Experimental results validate the simulation outcomes, demonstrating excellent agreement. In contrast to conventional reflective polarization converters with fixed frequency responses, the proposed electrically controllable polarization conversion offers significant potential in imaging and optical communications.