China is renowned for its extensive underground engineering projects and the complex geological and hydrological conditions it faces. Grouting treatment technology is widely employed in deep-buried mines and tunnels, where grouting parameters such as materials, pressure, volume, and hole arrangement significantly impact the effectiveness of grouting. This review paper comprehensively examines current research on grouting materials, theories, experiments, and numerical simulations. It summarizes the various factors that must be considered during the grouting process of fissures and explores the diffusion mechanisms of grout under their influence. Furthermore, further research is needed on the mechanisms and treatment methods for poor grouting in rock masses, the distribution patterns of fissures, optimization methods for grouting parameters, and grout quality assessment techniques. Future research should focus on developing more efficient experimental methods with higher accuracy levels while advancing grouting technologies. Establishing comprehensive and accurate rock mass models along with improving monitoring capabilities are also crucial aspects to consider. Therefore, studying the diffusion mechanisms of grout in fissured rock masses is of significant importance for the practical operation of underground engineering projects.