Nowadays, with the constant change of public aesthetic standards, a large number of new types and themes of film programs have emerged. For this reason, this paper proposes an improved neural network optimized by mutation ant colony algorithm for automatic acquisition of film labels, which not only overcomes the disadvantages of traditional neural network, such as difficulty in determining weights, slow convergence speed, and easiness to fall into local minimum, but also makes up for the shortcomings faced by using ant colony algorithm alone through the gradient information of quantum genetic algorithm neural network. The results show that the user similarity judgment is added in the process of calculating the user rating deviation between movies, and the neighbor chooses to add the movie tag weight and rating similarity as the basis for the neighbor selection of the target movie in the process of predicting the target movie rating. Experiments show the effectiveness of the algorithm.