BACKGROUNDWheat is an important grain crop that has been under serious threat from Fusarium graminearum. Nup2, a member of the nuclear pore complex, plays an important role in regulating eukaryotic nuclear protein transport and participates in gene regulation. Dissecting the function of nuclear pore proteins in pathogenic fungi may provide effective targets for novel fungicides.RESULTSMutants exhibited nutritional growth defects, asexual/sexual developmental abnormalities. Deficiency of FgNup2 resulted in increased resistance of Fusarium graminearum to cell wall disruptors and increased sensitivity to metal ions. Pathogenicity analyses showed that the mutant was significantly less virulent on flowering wheat ears, consistent with the observed decrease in deoxynivalenol (DON) production. Furthermore, we showed that FgNup2 interacts synergistically with FgTri6, a transcription factor of the TRI family, to regulate the expression of toxin‐producing genes, which, in turn, affects the biosynthesis of DON and related toxins.CONCLUSIONThis study revealed that FgNup2 plays important roles in the growth and development, cell wall integrity, stress response, pathogenicity, and DON synthesis of F. graminearum. © 2024 Society of Chemical Industry.