In recent years, there has been a growing demand for renewable energy that is free of power generation by products to address the global climate and resource limitation crises. Wind power generation is maximizing efficiency through constant research and development, and as the use of large capacity turbines increases, the scale of supporting structure also increases. The structural maintenance of hollow towers, the supporting structure of wind turbines, requires the installation of an opening through which workers can access the tower to check corrosion, cracks, and damage to the tower body. However, these access points can affect the buckling strength of the tower structures due to section loss. In this study, the effects of the opening on the structural stability and ultimate strength of a large diameter cylindrical shell, which could be used as a wind turbine supporting tower structure, were studied through elastic buckling and nonlinear analyses. Based on the analytical results, the effects of the thickness of a collar stiffener around the opening on the structure’s ultimate strength were investigated. The results were compared to the design criteria, and through regression analysis, an effective equation to determine the collar stiffener’s thickness for large diameter cylindrical shells was proposed based on an opening that satisfied the design strength criteria.