Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Objective In order to facilitate the tracing of infectious diseases in a small area and to effectively carry out disease control and epidemiological investigations, this research proposes a novel spatiotemporal model to estimate effective reproduction number(Re)for infectious diseases, based on the fundamental concept of contact tracing. Methods This study utilizes the incidence of hand, foot, and mouth disease (HFMD) among children in Bishan District, Chongqing, China from 2015 to 2019. The study incorporates the epidemiological characteristics of HFMD and aims to construct a Spatiotemporal Correlation Discrimination of HFMD. Utilizing ARC ENGINE and C# programming for the creation of a spatio-temporal database dedicated to HFMD to facilitate data collection and analysis. The scientific validity of the proposed method was verified by comparing the effective reproduction number obtained by the traditional SEIR model. Results We have ascertained the optimal search radius for the spatiotemporal search model to be 1.5 km. Upon analyzing the resulting Re values, which range from 1.14 to 4.75, we observe a skewed distribution pattern from 2015 to 2019. The median and quartile Re value recorded is 2.42 (1.98, 2.72). Except for 2018, the similarity coefficient r of the years 2015, 2016, 2017, and 2019 were all close to 1, and p <0.05 in the comparison of the two models, indicating that the Re values obtained by using the search model and the traditional SEIR model are correlated and closely related. The results exhibited similarity between the Re curves of both models and the epidemiological characteristics of HFMD. Finally, we illustrated the regional distribution of Re values obtained by the search model at various time intervals on Geographic Information System (GIS) maps which highlighted variations in the incidence of diseases across different communities, neighborhoods, and even smaller areas. Conclusion The model comprehensively considers both temporal variation and spatial heterogeneity in disease transmission and accounts for each individual's distinct time of onset and spatial location. This proposed method differs significantly from existing mathematical models used for estimating Re in that it is founded on reasonable scientific assumptions and computer algorithms programming that take into account real-world spatiotemporal factors. It is particularly well-suited for estimating the Re of infectious diseases in relatively stable mobile populations within small geographical areas.
Objective In order to facilitate the tracing of infectious diseases in a small area and to effectively carry out disease control and epidemiological investigations, this research proposes a novel spatiotemporal model to estimate effective reproduction number(Re)for infectious diseases, based on the fundamental concept of contact tracing. Methods This study utilizes the incidence of hand, foot, and mouth disease (HFMD) among children in Bishan District, Chongqing, China from 2015 to 2019. The study incorporates the epidemiological characteristics of HFMD and aims to construct a Spatiotemporal Correlation Discrimination of HFMD. Utilizing ARC ENGINE and C# programming for the creation of a spatio-temporal database dedicated to HFMD to facilitate data collection and analysis. The scientific validity of the proposed method was verified by comparing the effective reproduction number obtained by the traditional SEIR model. Results We have ascertained the optimal search radius for the spatiotemporal search model to be 1.5 km. Upon analyzing the resulting Re values, which range from 1.14 to 4.75, we observe a skewed distribution pattern from 2015 to 2019. The median and quartile Re value recorded is 2.42 (1.98, 2.72). Except for 2018, the similarity coefficient r of the years 2015, 2016, 2017, and 2019 were all close to 1, and p <0.05 in the comparison of the two models, indicating that the Re values obtained by using the search model and the traditional SEIR model are correlated and closely related. The results exhibited similarity between the Re curves of both models and the epidemiological characteristics of HFMD. Finally, we illustrated the regional distribution of Re values obtained by the search model at various time intervals on Geographic Information System (GIS) maps which highlighted variations in the incidence of diseases across different communities, neighborhoods, and even smaller areas. Conclusion The model comprehensively considers both temporal variation and spatial heterogeneity in disease transmission and accounts for each individual's distinct time of onset and spatial location. This proposed method differs significantly from existing mathematical models used for estimating Re in that it is founded on reasonable scientific assumptions and computer algorithms programming that take into account real-world spatiotemporal factors. It is particularly well-suited for estimating the Re of infectious diseases in relatively stable mobile populations within small geographical areas.
This article investigates a proposed new mathematical model that considers the infected individuals using various rate coefficients such as transmission, progression, recovery, and vaccination. The fact that the dynamic analysis is completely determined by the basic reproduction number is established. More specifically, local and global stabilities of the disease-free equilibrium and the endemic equilibrium are proved under certain parameter conditions when the basic reproduction number is below or above unity. A realistic computer simulation is performed for better understanding of the variations in trends of different compartments after the outbreak of the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.