A numerical method for integrating the unsteady twodimensional boundarylayer equations using a second-order-accurate implicit method, which allows for arbitrary mesh spacing in the space and time variables, is developed. A unique feature of the method is the use of an asymptotic solution valid at the downstream end of the integration mesh which permits backflow to be taken into account. Newton's iterative technique is used to solve the nonlinear finite-difference equations a t each computation step, using a rapid algorithm for solving the resulting linearized equations. The method is applied to a flow which is periodic in time and contains regions of backflow. The numerical computations are compared with known numerical and asymptotic solutions and the agreement is excellent.