Principle of optimality or dynamic programming leads to derivation of a partial differential equation (PDE) for solving optimal control problems, namely the Hamilton‐Jacobi‐Bellman (HJB) equation. In general, this equation cannot be solved analytically; thus many computing strategies have been developed for optimal control problems. Many problems in financial mathematics involve the solution of stochastic optimal control (SOC) problems. In this work, the variational iteration method (VIM) is applied for solving SOC problems. In fact, solutions for the value function and the corresponding optimal strategies are obtained numerically. We solve a stochastic linear regulator problem to investigate the applicability and simplicity of the presented method and prove its convergence. In particular, for Merton's portfolio selection model as a problem of portfolio optimization, the proposed numerical method is applied for the first time and its usefulness is demonstrated. For the nonlinear case, we investigate its convergence using Banach's fixed point theorem. The numerical results confirm the simplicity and efficiency of our method.