Summary
Numerous different techniques and instruments can be used for structural monitoring with different requirements producing different results. For instance, some techniques need to use embedded sensors inside the building, such as geotechnical sensors. However, this method cannot be used for historic and heritage buildings. Other methods can offer high quality, but with a low point density and require fixed stations and targets, such as total stations. In such a case, the location of deformation tends to be known, such as dams, bridges, high‐rise buildings, and so forth. Nevertheless, this is not the case for historic and heritage buildings where each block could be subject to deformation. The challenge in such a case is to detect the deformation without any previous knowledge. The aim of this research is to develop a new approach to detect and localise unpredictable deformation. It is based on terrestrial laser scanner measurements and generalised Procrustes analysis techniques to determine deformation vectors, although boxing structure and F‐tests are used to detect and localise deformation. In summary, after applying this approach, the whole concerned building is represented as parts, for each of them, the displacement vector and deformation probability are estimated. Validation experiments have shown the capability of the proposed method to detect and localise deformation with magnitude less than noise level in simulated data and of subcentimetre level for ranges up to 10 m in real scan data. Finally, the new approach has been applied to an English Historic site, Bellmanpark Limeklins.