This study investigates the impact of soil–structure interaction (SSI) and foundation–soil–foundation interaction (FSFI) on the dynamic behaviour of jacket substructures founded on buckets for offshore wind turbines. A parametric analysis was conducted, focusing on critical load cases for conservative foundation design. Different load configurations were examined: collinear wind and wave (fluid–structure interaction) loads, along with misaligned configurations at 45° and 90°, to assess the impact of different loading directions. The dynamic response was evaluated through key structural parameters, including axial forces, shear forces, bending moments, and stresses on the jacket. Simulations employed the National Renewable Energy Laboratory (NREL) 5MW offshore wind turbine mounted on the OC4 project jacket founded on suction buckets. An additional optimised jacket design was also studied for comparison. An OpenFAST model incorporating SSI and FSFI considering a homogeneous soil profile was employed for the dynamic analysis. The results highlight the significant role of the FSFI on the dynamic behaviour of multi-supported jacket substructure, affecting the natural frequency, acceleration responses, and internal forces.