Electrohydrodynamic (EHD) flow is a type of liquid flow driven by an external electric force. In electrolyte solutions, anions and cations usually interact with each other to maintain electroneutrality. Under such a condition, it is difficult to drive a liquid flow by applying electric potentials on the order of 1 V; at least a few tens of volts is required to generate EHD flows, which may not be preferable for aqueous solutions. In this study, we propose a novel method of generating a liquid flow through a channel with cross-sectional dimensions of 1 × 1 mm2, which is placed in an ion exchange membrane to separate the cation and anion transport pathways. When the optimized design of the experimental apparatus was used, EHD flows were successfully generated in aqueous solutions by applying a relatively low electric potential of 2.2 V, and the flow velocity was measured over a wide range of electrolyte concentrations by particle image velocimetry. It was found that high concentration gradients caused the rapid discharge of ions passing through the channel and contributed to achieving a flow speed on the order of 1 mm/s. EHD flows were also theoretically explained using the Navier–Stokes equations to model an ion-drag flow driven by nonequilibrium ion transport in external electric fields. This flow generation method is practical only when ion transport pathways are well controlled and effectively rectified. The present findings will lead to the development of a promising technology to control liquid flows in multiscale fluidic channels.