A numerical study on the in-nozzle flow and near-field spray dynamics of spirally grooved hole nozzles: Effects of injection pressure and length/diameter ratio
Xianyin Leng,
Mochen Xing,
Yicheng Deng
et al.
Abstract:The nozzle geometry in internal combustion engines plays a critical role in determining cavitating flow characteristics, which affect in-cylinder atomization, combustion, and engine performance. In this study, the multi-phase flow inside and outside spirally grooved hole nozzles were simulated using the Volume of Fluid model coupled with the Discrete Phase Model. This approach allowed for detailed examination of how injection pressure and length-to-diameter (L/D) ratio influence cavitation and atomization. The… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.