In an unreliable cluster-based, broadcast vehicular network setting, we investigate the transmission reliability and throughput performance of random network coding (RNC) as a function of the percentage of packet generation rate and transmit power to noise ratio. In the paper, a novel scheme called reliable and efficient cooperative cross-layer MAC (RECMAC) is proposed. The proposed scheme consists of a source vehicle broadcasting packets to a set of receivers (i.e. one-to-many) over independent broadcast erasure channels. The source vehicle performs RNC on N packets and broadcasts the encoded message to a set of receivers. In each hop, several vehicles form a cluster and cooperatively transmit the encoded or re-encoded packet. The combination of RNC, cluster based, and cooperative communications enables RECMAC to optimally minimize data redundancy, which means less overhead, and improve reliability as opposed to coding-based solutions. Theoretical analyses and simulation results show that under the same conditions RECMAC scheme can achieve improved performance in terms of transmission reliability and throughput.