Gravitational lensing is a potentially powerful tool for elucidating the origin of gamma-ray emission from distant sources. Cosmic lenses magnify the emission from distance sources and produce time delays between mirage images. Gravitationally-induced time delays depend on the position of the emitting regions in the source plane. The Fermi/LAT telescope continuously monitors the entire sky and detects gamma-ray flares, including those from gravitationally-lensed blazars. Therefore, temporal resolution at gamma-ray energies can be used to measure these time delays, which, in turn, can be used to resolve the origin of the gamma-ray flares spatially. We provide a guide to the application and Monte Carlo simulation of three techniques for analyzing these unresolved light curves: the Autocorrelation Function, the Double Power Spectrum, and the Maximum Peak Method. We apply these methods to derive time delays from the gamma-ray light curve of the gravitationally-lensed blazar PKS 1830-211. The result of temporal analysis combined with the properties of the lens from radio observations yield an improvement in spatial resolution at gamma-ray energies by a factor of 10000. We analyze four active periods. For two of these periods, the emission is consistent with origination from the core and for the other two, the data suggest that the emission region is displaced from the core by more that ∼ 1.5 kpc. For the core emission, the gamma-ray time delays, 23 ± 0.5 days and 19.7 ± 1.2 days, are consistent with the radio time delay 26 +4 −5 days.