Motions of a floating body in waves are computed in the time domain by solving the body-exact problem with the panel-free method and exact geometry. In the present study, the body boundary condition is imposed on the instantaneous wetted surface exactly at each time step. The free surface boundary is assumed linear so that the timedomain Green function can be applied. The body geometry is represented by NonUniform Rational B-Spline surfaces. At each time step, the instantaneous wetted surface is obtained by trimming the entire body surface. With the panel-free method, the body-exact problems are solved without involving repanelization of the wetted hull surface at each time step. Validation studies have been carried out for a submerged sphere, a flared body, and a Wigley hull. The hydrodynamic forces on the submerged sphere undergoing largeamplitude motion were computed and compared with analytical solutions. For the flared body oscillating in a free surface and the Wigley hull in waves, numerical results were compared with experimental data and solutions by other numerical methods.