Proceedings. ICCEA 2004. 2004 3rd International Conference on Computational Electromagnetics and Its Applications, 2004.
DOI: 10.1109/iccea.2004.1459279
|View full text |Cite
|
Sign up to set email alerts
|

A parabolic wave equation approach for modeling propagation through windows

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
3
0

Publication Types

Select...
3
2

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(3 citation statements)
references
References 14 publications
0
3
0
Order By: Relevance
“…The modelled geometry should have a preferred propagation direction, with important physical phenomena not occurring at angles greater than 15 degrees to this direction, while the propagation media should be weakly inhomogeneous. Tunnels and other special geometries are best suited for the parabolic equation [45]. Wider application is made possible by relaxing the 15-degree constraint [46], [47].…”
Section: Methodsmentioning
confidence: 99%
See 1 more Smart Citation
“…The modelled geometry should have a preferred propagation direction, with important physical phenomena not occurring at angles greater than 15 degrees to this direction, while the propagation media should be weakly inhomogeneous. Tunnels and other special geometries are best suited for the parabolic equation [45]. Wider application is made possible by relaxing the 15-degree constraint [46], [47].…”
Section: Methodsmentioning
confidence: 99%
“…It has already been applied to propagation problems, e.g., in small indoor environments [45], [46]. Since MoM involves solving a set of linear equations as part of the numerical solution process, the quantum HHL algorithm can be used in a similar way as for FEM.…”
Section: Quantum Methods Of Momentsmentioning
confidence: 99%
“…Modelled geometry should have a preferential propagation direction, with important physical phenomena not occurring at angles greater than 15 degrees from this direction. Tunnels and other special geometries are best suited for the parabolic equation [69]. Wider use is enabled by the relaxation of 15-degree constraint [70], [71].…”
Section: Other Full-wave Techniques and Hybridsmentioning
confidence: 99%