2014
DOI: 10.1007/s11590-014-0837-4
|View full text |Cite
|
Sign up to set email alerts
|

A parallel branch and bound algorithm for the maximum labelled clique problem

Abstract: The maximum labelled clique problem is a variant of the maximum clique problem where edges in the graph are given labels, and we are not allowed to use more than a certain number of distinct labels in a solution. We introduce a new branch-andbound algorithm for the problem, and explain how it may be parallelised. We evaluate an implementation on a set of benchmark instances, and show that it is consistently faster than previously published results, sometimes by four or five orders of magnitude.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2016
2016
2020
2020

Publication Types

Select...
2
1
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(1 citation statement)
references
References 13 publications
0
1
0
Order By: Relevance
“…Branch & X [Mezmaz et al, 2014, Chakroun et al, 2013b, Herrera et al, 2017, Taoka et al, 2008, Ponz-Tienda et al, 2017, Ismail et al, 2014, Paulavicius et al, 2011, Christou and Vassilaras, 2013, McCreesh and Prosser, 2015, Eckstein et al, 2015, Carvajal et al, 2014, Borisenko et al, 2017, Gmys et al, 2017, Liu and Kao, 2013, Bak et al, 2011, Gmys et al, 2016, Silva et al, 2015, Barreto and Bauer, 2010, Vu and Derbel, 2016, Chakroun and Melab, 2015, Paulavičius and Žilinskas, 2009, Posypkin and Sigal, 2008, Chakroun et al, 2013a, Aitzai and Boudhar, 2013, Ozden et al, 2017, Cauley et al, 2011, Xu et al, 2009, Aldasoro et al, 2017, Pages-Bernaus et al, 2015, Lubin et al, 2013, Adel et al, 2016, Borisenko et al, 2011, Boukedjar et al, 2012, Carneiro et al, 2011, Galea and Le Cun, 2011, Herrera et al, 2013, Sanjuan-Estrada et al, 2011] Dynamic programming [Dias et al, 2013, Aldasoro et al, 2015…”
Section: Algorithm Typementioning
confidence: 99%
“…Branch & X [Mezmaz et al, 2014, Chakroun et al, 2013b, Herrera et al, 2017, Taoka et al, 2008, Ponz-Tienda et al, 2017, Ismail et al, 2014, Paulavicius et al, 2011, Christou and Vassilaras, 2013, McCreesh and Prosser, 2015, Eckstein et al, 2015, Carvajal et al, 2014, Borisenko et al, 2017, Gmys et al, 2017, Liu and Kao, 2013, Bak et al, 2011, Gmys et al, 2016, Silva et al, 2015, Barreto and Bauer, 2010, Vu and Derbel, 2016, Chakroun and Melab, 2015, Paulavičius and Žilinskas, 2009, Posypkin and Sigal, 2008, Chakroun et al, 2013a, Aitzai and Boudhar, 2013, Ozden et al, 2017, Cauley et al, 2011, Xu et al, 2009, Aldasoro et al, 2017, Pages-Bernaus et al, 2015, Lubin et al, 2013, Adel et al, 2016, Borisenko et al, 2011, Boukedjar et al, 2012, Carneiro et al, 2011, Galea and Le Cun, 2011, Herrera et al, 2013, Sanjuan-Estrada et al, 2011] Dynamic programming [Dias et al, 2013, Aldasoro et al, 2015…”
Section: Algorithm Typementioning
confidence: 99%