With the expanding commercial availability of gasphase separation systems that incorporate gas-phase mobility, there is a concurrent rise in efforts to cast the gas-phase mobility coefficient in terms of an ion-neutral collision cross-section (CCS). The motivating factors for this trend are varied, but many aim to complement experimental results with computationally generated CCS values from in silico structural approximations. Unfortunately, the current paradigm for relating experimental mobility results to computationally derived structures relies upon empirical approaches, including a myriad of variables that do not realistically bound the comparison. In this Critical Insight, we advocate for the development of a self-consistent experimental and computational framework that uses laboratory results to constrain the scope of the modeling effort. This paper aims to prompt discussion, challenge assumptions, and promote the development of more efficient, accurate computational techniques within the gas-phase ion measurement community. Specifically, we postulate whether experimental deviations from Langevin's polarization limit (K pol ) are suitable to estimate the relative contributions of hard-sphere collisions and long-range interactions within CCS values. Not surprisingly, different molecule classes exhibit different trends in the K/K pol ratio when normalized for reduced mass, and the most common IMS calibrants (e.g., tune mix, polyalanine, tetraalkylammonium salts) follow different polarizability trends than many of the analytes probed in the literature. Succinctly, if gas-phase ion structure is largely invariant based upon the colliding neutral and newly developed experimental efforts can quantitatively capture ion polarizability, then modeling efforts describing a target analyte must be self-consistent as the collision neutral is changed in silico.