This paper deals with the problem of designing and choosing auctioning mechanisms for multiple commonly ranked objects as, for instance, keyword auctions in search engines on Internet. We shall adopt the point of view of the auctioneer who has to select the auction mechanism to be implemented not only considering its expected revenue, but also its associated risk. In order to do this, we consider a wide parametric family of auction mechanisms which contains the generalizations of discriminatory-price auction, uniform-price auction and Vickrey auction. For completeness, we also analyze the Generalized Second Price (GSP) auction which is not in the family. The main results are: (1) all members of the family satisfy the four basic properties of fairness, no over-payment, optimality and efficiency, (2) the Bayesian Nash equilibrium and the corresponding value at risk for the auctioneer are obtained for the considered auctions, (3) the GSP and all auctions in the family provide the same expected revenue, (4) there are new interesting auction mechanisms in the family which have a lower value at risk than the GSP and the classical auctions. Therefore, a window opens to apply new auction mechanisms that can reduce the risk to be assumed by auctioneers.