Ozone is a powerful oxidant, most commonly used for oxidation of alkenes to carbonyls. The synthetic utility of other ozone-mediated reactions is hindered by its high reactivity and propensity to over-oxidize organic molecules, including most solvents. This challenge can largely be mitigated by adsorbing both substrate and ozone onto silica gel, providing a solvent-free oxidation method. In this manuscript, a flow-based packed bed reactor approach is described that provides exceptional control of reaction temperature and time of this reaction to achieve improved control and chemoselectivity over this challenging reaction. A powerful method to oxidize primary amines into nitroalkanes is achieved. Examples of pyridine, C-H bond, and arene oxidations are also demonstrated, confirming the system is generalizable to diverse ozone-mediated processes. File list (2) download file view on ChemRxiv Manuscript.pdf (1.38 MiB) download file view on ChemRxiv Supporting information.pdf (3.03 MiB)