Charles (2010) 'A new partition of unity nite element free from the linear dependence problem and possessing the delta property.', Computer methods in applied mechanics and engineering., 199 (17-20). pp. 1036-1043. Further information on publisher's website:http://dx.doi.org/10.1016/j.cma. 2009.11.019 Publisher's copyright statement:Additional information:
Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
ACCEPTED MANUSCRIPT
AbstractPartition-of-unity based finite element methods (PUFEMs) have appealing capabilities for p-adaptivity and local refinement with minimal or even no remeshing of the problem domain. However, PUFEMs suffer from a number of problems that practically limit their application, namely the linear dependence (LD) problem, which leads to a singular global stiffness matrix, and the difficulty with which essential boundary conditions can be imposed due to the lack of the Kronecker delta property. In this paper we develop a new PU-based triangular element using a dual local approximation scheme by treating boundary and interior nodes separately. The present method is free from the LD problem and essential boundary conditions can be applied directly as in the FEM. The formulation uses triangular elements, however the essential idea is readily extendable to other types of meshed or meshless formulation based on a PU approximation. The computational cost of the present method is comparable to other PUFEM elements described in the literature. The proposed method can be simply understood as a PUFEM with composite shape functions possessing the delta property and appropriate compatibility.