1964
DOI: 10.2514/3.2555
|View full text |Cite
|
Sign up to set email alerts
|

A passive system for determining the attitude of a satellite

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
99
0
4

Year Published

2008
2008
2020
2020

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 224 publications
(103 citation statements)
references
References 1 publication
0
99
0
4
Order By: Relevance
“…Since n!b C (q e ) represents a small rotation between the n 0 and n frames, using (14) it can be written as…”
Section: Linearization In the Navigation Framementioning
confidence: 99%
See 1 more Smart Citation
“…Since n!b C (q e ) represents a small rotation between the n 0 and n frames, using (14) it can be written as…”
Section: Linearization In the Navigation Framementioning
confidence: 99%
“…In general, these algorithms can be classified into three groups. The first group consists of deterministic algorithms such as the ones described in [14]. The second group consists of algorithms which take a classical least squares approach to the problem as articulated by Wahba in [12].…”
Section: Introductionmentioning
confidence: 99%
“…In this subsection, we use the measurement for agent 2 (relative position information expressed in the coordinate basis of agent 2, i.e., [23], [24] such that R(n, φ) is reconstructed. The TRIAD algorithm is a classical deterministic algorithm to estimate an attitude, in which the attitude is directly calculated based on two pairs of nonparallel vectors.…”
Section: A Estimation Of R(n φ) Using the Triad Algorithmmentioning
confidence: 99%
“…Now, we have two vector observation that are known in the reference frame, as well as in the body frame. A simple algebraic method to transform such observations into attitude matrix is the TRIAD algorithm and its variants [17], [18]. Since the performance of these methods is well studied, the following sections focus on the performance of the proposed methods in estimating individual pointing vectors.…”
Section: A a Simplified Approachmentioning
confidence: 99%