Upon wounding or infection, a serine proteinase cascade in insect hemolymph leads to prophenoloxidase (proPO) activation and melanization, a defense response against invading microbes. In the tobacco hornworm Manduca sexta, this response is initiated via hemolymph proteinase 14 (HP14), a mosaic protein that interacts with bacterial peptidoglycan or fungal β-1,3-glucan to autoactivate. In this paper, we report the expression, purification, and functional analysis of M. sexta HP21 precursor, an HP14 substrate similar to Drosophila Snake. The recombinant proHP21 is a 51.1 kDa glycoprotein with an amino-terminal clip domain, a linker region, and a carboxyl-terminal serine proteinase domain. HP14, generated by incubating proHP14 with β-1,3-glucan and β-1,3-glucan recognition protein-2, activated proHP21 by limited proteolysis between Leu 152 and Ile 153 . Active HP21 formed an SDS-stable complex with M. sexta serpin-4, a physiological regulator of the proPO activation system. We determined the P1 site of serpin-4 to be Arg 355 and, thus, confirmed our prediction that HP21 has trypsin-like specificity. After active HP21 was added to the plasma, there was a major increase in PO activity. HP21 cleaved proPO activating proteinase-2 precursor (proPAP-2) after Lys 153 and generated an amidase activity which activated proPO in the presence of serine proteinase homolog-1 and 2. In summary, we have discovered and reconstituted a branch of the proPO activation cascade in vitro: β-1,3-glucan recognition -proHP14 autoactivation -proHP21 cleavage -PAP-2 generation -proPO activation -melanin formation.