Noise-band vocoders are often used to simulate the signal processing algorithms used in cochlear implants (CIs), producing acoustic stimuli that may be presented to normal hearing (NH) subjects. Such evaluations may obviate the heterogeneity of CI user populations, achieving greater experimental control than when testing on CI subjects. However, it remains an open question whether advancements in algorithms developed on NH subjects using a simulator will necessarily improve performance in CI users. This study assessed the similarity in vowel identification of CI subjects and NH subjects using an 8-channel noise-band vocoder simulator configured to match input and output frequencies or to mimic output after a basalward shift of input frequencies. Under each stimulus condition, NH subjects performed the task both with and without feedback/training. Similarity of NH subjects to CI users was evaluated using correct identification rates and information theoretic approaches. Feedback/training produced higher rates of correct identification, as expected, but also resulted in error patterns that were closer to those of the CI users. Further evaluation remains necessary to determine how patterns of confusion at the token level are affected by the various parameters in CI simulators, providing insight into how a true CI simulation may be developed to facilitate more rapid prototyping and testing of novel CI signal processing and electrical stimulation strategies.