Abstract:A fundamental key for enterprise users is a cloud-based parameter-driven statistical service and it has become a substantial impact on companies worldwide. In this paper, we demonstrate the statistical analysis for some certain criteria that are related to data and applied to the cloud server for a comparison of results. In addition, we present a statistical analysis and cloud-based resource allocation method for a heterogeneous platform environment by performing a data and information analysis with consideration of the application workload and the server capacity, and subsequently propose a service prediction model using a polynomial regression model. In particular, our aim is to provide stable service in a given large-scale enterprise cloud computing environment. The virtual machines (VMs) for cloud-based services are assigned to each server with a special methodology to satisfy the uniform utilization distribution model. It is also implemented between users and the platform, which is a main idea of our cloud computing system. Based on the experimental results, we confirm that our prediction model can provide sufficient resources for statistical services to large-scale users while satisfying the uniform utilization distribution.