The purpose of this study was to assess the feasibility of high spatial resolution, selective arterial phase, 3D contrast-enhanced (CE) MR angiography with first pass bolus, software-trigger, elliptical centric view ordering in the detection of intracranial aneurysms. Our study included nine consecutive patients with ten intracranial aneurysms. 3D TOF MR angiography and 3D CE MR angiography were carried out with a 1.5-T MR scanner. 3D CE MR angiography was performed with an automated bolus detection algorithm and elliptical centric view order using ultrafast SPGR with a spatial resolution of 0.63x0.83x0.5 mm and imaging time of 55 s. Observers detected seven of ten aneurysms on 3D TOF MR angiograms and nine of ten aneurysms on 3D CE MR angiograms. 3D CE MR angiography clearly revealed an IC-PC aneurysm with a relatively smaller neck, a broad-based small aneurysm originating from tortuous and dilated MCA bifurcation, and a residual aneurysm and parent vessels adjacent to metallic aneurysmal clips, which had relatively low signal intensities on 3D TOF MR angiograms. 3D CE MR angiography was found to be a good and promising technique for detecting intracranial aneurysms with small necks and slow flow, vasculature with aneurysmal clips and tortuous vasculature with disturbed flow.