Perpendicular magnetic anisotropy (PMA) in magnetic thin films has attracted much attention due to its potential applications in spintronics devices. Here, we report the continuous strain-mediated PMA in epitaxial (111) CoFe2O4 (CFO) thin films grown on (0001) LiTaO3 substrates. A large variation in lattice strain (∼0.9%) in a continuous way is realized in the CFO thin films by changing substrate temperature during deposition due to the difference in the thermal expansion coefficient between CFO and LiTaO3. As a result, the PMA of the (111) CFO thin films can be continuously mediated by the strain with uniaxial magnetic anisotropy energy in the range of 0.12-14.69×106 erg/cm3. Furthermore, the strain as well as the consequent PMA in the (111) CFO thin films can be maintained within the thickness of 25–205 nm, which is consistent with the scenario of the magnetoelastic effect. Our results reveal that the CFO/LiTaO3 system can be regarded as an ideal platform to realize robust PMA and its continuous strain tuning in the (111) CFO thin films by virtue of strain-induced magnetic anisotropy.