Abstract. The uniformly damped Korteweg-de Vries (KdV) equation with periodic boundary conditions can be viewed as a Hamiltonian system with dissipation added. The KdV equation is the Hamiltonian part and it has a two-dimensional family of relative equilibria. These relative equilibria are space-periodic soliton-like waves, known as cnoidal waves.Solutions of the dissipative system, starting near a cnoidal wave, are approximated with a long curve on the family of cnoidal waves. This approximation curve consists of a quasi-static succession of cnoidal waves. The approximation process is sharp in the sense that as a solution tends to zero as t → ∞, the difference between the solution and the approximation tends to zero in a norm that sharply picks out their difference in shape. More explicitly, the difference in shape between a solution and a quasi-static cnoidal-wave approximation is of the order of the damping rate times the norm of the cnoidal-wave at each instant.