The modelling of liquid–vapour flow with phase transition poses many challenges, both on the theoretical level, as well as on the level of discretisation methods. Therefore, accurate mathematical models and efficient numerical methods are required. In that, we focus on two modelling approaches: the sharp-interface (SI) approach and the diffuse-interface (DI) approach. For the SI-approach, representing the phase boundary as a co-dimension-1 manifold, we develop and validate analytical Riemann solvers for basic isothermal two-phase flow scenarios. This ansatz becomes cumbersome for increasingly complex thermodynamical settings. A more versatile multiscale interface solver, that is based on molecular dynamics simulations, is able to accurately describe the evolution of phase boundaries in the temperature-dependent case. It is shown to be even applicable to two-phase flow of multiple components. Despite the successful developments for the SI approach, these models fail if the interface undergoes topological changes. To understand merging and splitting phenomena for droplet ensembles, we consider DI models of second gradient type. For these Navier–Stokes–Korteweg systems, that can be seen as a third order extension of the Navier–Stokes equations, we propose variants that are more accessible to standard numerical schemes. More precisely, we reformulate the capillarity operator to restore the hyperbolicity of the Euler operator in the full system.