Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
BackgroundDespite regulatory efforts to formalize guidance policies on biosimilars, there remains a need to educate healthcare stakeholders on the acknowledged definition of biosimilarity and the data that underpin it.ObjectivesThe objectives of the study were to systematically collate published data for monoclonal antibodies and fusion protein biosimilars indicated for cancer, chronic inflammatory diseases, and other indications, and to explore differences in the type and weight (quantity and quality) of available evidence.MethodsMEDLINE, Embase, and ISI Web of Science were searched to September 2015. Conference proceedings (n = 17) were searched 2012 to July 2015. Included studies were categorized by originator, study type, and indication. To assess data strength and validity, risk of bias assessments were undertaken.ResultsAcross therapeutic areas, 43 named (marketed or proposed) biosimilars were identified for adalimumab, abciximab, bevacizumab, etanercept, infliximab, omalizumab, ranibizumab, rituximab, and trastuzumab originators. Infliximab CT-P13, SB2, and etanercept SB4 biosimilars have the greatest amount of published evidence of similarity with their originators, based on results of clinical studies involving larger numbers of patients or healthy subjects (N = 1405, 743, and 734, respectively). Published data were also retrieved for marketed intended copies of etanercept and rituximab.ConclusionsThis unbiased synthesis of the literature exposed significant differences in the extent of published evidence between molecules at preclinical, clinical, and post-marketing stages of development, providing clinicians and payers with a consolidated view of the available data and remaining gaps.Electronic supplementary materialThe online version of this article (doi:10.1007/s40259-016-0199-9) contains supplementary material, which is available to authorized users.
BackgroundDespite regulatory efforts to formalize guidance policies on biosimilars, there remains a need to educate healthcare stakeholders on the acknowledged definition of biosimilarity and the data that underpin it.ObjectivesThe objectives of the study were to systematically collate published data for monoclonal antibodies and fusion protein biosimilars indicated for cancer, chronic inflammatory diseases, and other indications, and to explore differences in the type and weight (quantity and quality) of available evidence.MethodsMEDLINE, Embase, and ISI Web of Science were searched to September 2015. Conference proceedings (n = 17) were searched 2012 to July 2015. Included studies were categorized by originator, study type, and indication. To assess data strength and validity, risk of bias assessments were undertaken.ResultsAcross therapeutic areas, 43 named (marketed or proposed) biosimilars were identified for adalimumab, abciximab, bevacizumab, etanercept, infliximab, omalizumab, ranibizumab, rituximab, and trastuzumab originators. Infliximab CT-P13, SB2, and etanercept SB4 biosimilars have the greatest amount of published evidence of similarity with their originators, based on results of clinical studies involving larger numbers of patients or healthy subjects (N = 1405, 743, and 734, respectively). Published data were also retrieved for marketed intended copies of etanercept and rituximab.ConclusionsThis unbiased synthesis of the literature exposed significant differences in the extent of published evidence between molecules at preclinical, clinical, and post-marketing stages of development, providing clinicians and payers with a consolidated view of the available data and remaining gaps.Electronic supplementary materialThe online version of this article (doi:10.1007/s40259-016-0199-9) contains supplementary material, which is available to authorized users.
BackgroundBiologic treatments for cancer continue to place a significant economic burden on healthcare stakeholders. Biosimilar therapies may help reduce this burden through cost savings, thereby increasing patient access.ObjectivesThe purpose of this study was to collate all published data to assess the weight of available evidence (quantity and quality) for proposed monoclonal antibody biosimilars and intended copies, for the treatment of cancer.MethodsMEDLINE®, Embase®, and ISI Web of Science® databases were searched to September 2015. Conference proceedings (17) were searched (2012 to July 2015). Searches of the United States National Library of Medicine ClinicalTrials.gov registry were also conducted. Risk of bias assessments were undertaken to assess data strength and validity.ResultsProposed biosimilars were identified in 23 studies (36 publications) in oncology and ten studies in 14 publications in oncology and chronic inflammatory diseases for bevacizumab, rituximab, and trastuzumab originators. Based on our review of the included published studies, and as inferred from the conclusions of study authors, the identified proposed biosimilars exhibit close similarity to their originators. Published data were also retrieved on intended copies of rituximab. It remains unclear what role these agents may have, as publications on rigorous clinical studies are lacking for these molecules.ConclusionWhile biosimilar products have the potential to improve patient access to important biologic therapies, robust evidence of outcomes for monoclonal antibody biosimilars in treating cancer patients, including data from comparative efficacy and safety trials, is not yet available in the published literature. Significant data gaps exist, particularly for intended copies, which reinforces the need to maintain a clear differentiation between these molecules and true biosimilars. As more biosimilars become available for use, it will be important for stakeholders to understand fully the robustness of overall evidence used to demonstrate biosimilarity and gain regulatory approval.Electronic supplementary materialThe online version of this article (doi:10.1007/s40259-016-0207-0) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.