Myofibroblast differentiation, essential for driving extracellular matrix synthesis in pulmonary fibrosis, requires increased glycolysis. While glycolytic cells must export lactate, the contributions of lactate transporters to myofibroblast differentiation are unknown. In this study, we investigated how MCT1 and MCT4, key lactate transporters, influence myofibroblast differentiation and experimental pulmonary fibrosis. Our findings reveal that inhibiting MCT1 or MCT4 reduces TGFβ-stimulated pulmonary myofibroblast differentiationin vitroand decreases bleomycin-induced pulmonary fibrosisin vivo. Through comprehensive metabolic analyses, including bioenergetics, stable isotope tracing, metabolomics, and imaging mass spectrometry in both cells and mice, we demonstrate that inhibiting lactate transport enhances oxidative phosphorylation, reduces reactive oxygen species production, and diminishes glucose metabolite incorporation into fibrotic lung regions. Furthermore, we introduce VB253, a novel MCT4 inhibitor, which ameliorates pulmonary fibrosis in both young and aged mice, with comparable efficacy to established antifibrotic therapies. These results underscore the necessity of lactate transport for myofibroblast differentiation, identify MCT1 and MCT4 as promising pharmacologic targets in pulmonary fibrosis, and support further evaluation of lactate transport inhibitors for patients for whom limited therapeutic options currently exist.