“…Because of the economical and cultural importance of the genus Camellia, many efforts have been made to reconstruct its molecular evolution. The complex genetic relations between cultivated tea plants and their wild ancestors have been studied extensively (Prince and Parks, 2001;Wachira et al, 2001;Chen and Yamaguchi, 2002;Xiao and Parks, 2003;Sharma et al, 2009;Vijayan et al, 2009;Sharma et al, 2010;Liu et al, 2012;Yao et al, 2012;Yang et al, 2013;Huang et al, 2014;Zhang et al, 2014;Xu et al, 2015;Meegahakumbura et al, 2016;Yang et al, 2016;Wang et al, 2020;Xia et al, 2020;Zhang et al, 2020b;Wu et al, 2022); Zhang et al, 2020b. Nuclear DNA-based Camellia phylogenies have been proposed on the basis of ribosomal DNA (Vijayan et al, 2009;Xu et al, 2015;Zhang M. et al, 2021), single-nucleotide polymorphisms (SNPs) and restriction-site associated (RAD) markers (Yang et al, 2016), transposons (Yao et al, 2017) and transcript sequences (Zhang et al, 2022;Wu et al, 2022). Recently, whole genome sequencing has provided new opportunities for phylogenetic tree construction (Wei et al, 2018;Wang et al, 2020;Xia et al, 2020;Zhang et al, 2020b;Zhang et al, 2020b;Zhang X. et al, 2021).…”