Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The escalating threat of phishing attacks poses significant challenges to cybersecurity, necessitating innovative approaches for detection and mitigation. This paper addresses this need by presenting a comprehensive review of state-of-the-art methodologies for phishing detection, spanning traditional machine learning techniques to cutting-edge deep learning frameworks. The review encompasses a diverse range of methods, including list-based approaches, machine learning algorithms, graph-based analysis, deep learning models, network embedding techniques, and generative adversarial networks (GANs). Each method is meticulously scrutinized, highlighting its rationale, advantages, and empirical results. For instance, deep learning models, particularly convolutional neural networks (CNNs) and recurrent neural networks (RNNs), demonstrate superior detection performance, leveraging their ability to extract complex patterns from phishing data. Ensemble learning techniques and GANs offer additional benefits by enhancing detection accuracy and resilience against adversarial attacks. The impact of this review extends beyond academic discourse, informing practitioners and policymakers about the evolving landscape of phishing detection. By elucidating the strengths and limitations of existing methods, this paper guides the development of more robust and effective cybersecurity solutions. Moreover, the insights gleaned from this review lay the groundwork for future research endeavors, such as integrating contextual information, user behavior analysis, and explainable AI techniques into phishing detection systems. Ultimately, this work contributes to the collective effort to fortify digital defenses against sophisticated phishing threats, safeguarding the integrity of online ecosystems.
The escalating threat of phishing attacks poses significant challenges to cybersecurity, necessitating innovative approaches for detection and mitigation. This paper addresses this need by presenting a comprehensive review of state-of-the-art methodologies for phishing detection, spanning traditional machine learning techniques to cutting-edge deep learning frameworks. The review encompasses a diverse range of methods, including list-based approaches, machine learning algorithms, graph-based analysis, deep learning models, network embedding techniques, and generative adversarial networks (GANs). Each method is meticulously scrutinized, highlighting its rationale, advantages, and empirical results. For instance, deep learning models, particularly convolutional neural networks (CNNs) and recurrent neural networks (RNNs), demonstrate superior detection performance, leveraging their ability to extract complex patterns from phishing data. Ensemble learning techniques and GANs offer additional benefits by enhancing detection accuracy and resilience against adversarial attacks. The impact of this review extends beyond academic discourse, informing practitioners and policymakers about the evolving landscape of phishing detection. By elucidating the strengths and limitations of existing methods, this paper guides the development of more robust and effective cybersecurity solutions. Moreover, the insights gleaned from this review lay the groundwork for future research endeavors, such as integrating contextual information, user behavior analysis, and explainable AI techniques into phishing detection systems. Ultimately, this work contributes to the collective effort to fortify digital defenses against sophisticated phishing threats, safeguarding the integrity of online ecosystems.
Advances in blockchain technology have attracted significant attention across the world. The practical blockchain applications emerging in various domains ranging from finance, healthcare, and entertainment, have quickly become attractive targets for adversaries. The novelty of the technology coupled with the high degree of anonymity it provides made malicious activities even less visible in the blockchain environment. This made their robust detection challenging. This paper presents EtherShield, an novel approach for identifying malicious activity on the Ethereum blockchain. By combining temporal transaction information and contract code characteristics, EtherShield can detect various types of threats and provide insight into the behavior of contracts. The time-interval based analysis used by EtherShield enables expedited detection, achieving comparable accuracy to other approaches with significantly less data. Our validation analysis, which involved over 15,000 Ethereum accounts, demonstrated that EtherShield can significantly expedite the detection of malicious activity while maintaining high accuracy levels (86.52% accuracy with 1 hour of transaction history data and 91.33% accuracy with 1 year of transaction history data).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.