In the last decade, the interest in software-defined ultra-wideband (UWB) and tunable radio frequency (RF) apparatuses with low size, weight, and power consumption (SWaP), has grown dramatically, pushed by the new 6G vision where, RF equipment shall enable a large number of fundamental applications as UWB communications, robot localization mapping and control and high precision radars, all of them contributing in revolutionizing our life style.
Unfortunately, the coexistence of ultra-wideband and software-defined operation, tunability and low SWaP represents a big issue in the current RF technologies.
In this article, to the best of our knowledge, the first example of a complete tunable software-defined RF transmitter with low footprint (i.e. on photonic chip) is presented exceeding the state-of-the-art for the extremely large tunability range of 0.5-50 GHz without any parallelization of narrower-band components and with fast tuning (<200micros). This first implementation, represents a breakthrough in microwave photonics.