2024
DOI: 10.1007/s10845-024-02452-w
|View full text |Cite
|
Sign up to set email alerts
|

A physically-informed machine learning model for freeform bending

Philipp Lechner,
Lorenzo Scandola,
Daniel Maier
et al.

Abstract: This work aims at a fast computational process model of the free-form bending process. It proposes a novel physically-informed machine learning model, which is trained with experimental data of bending constant radii and utilizes additional physical bending knowledge by integrating Timoshenko’s beam theory. The model is able to predict the resulting plastic deformation of the tube after exiting the die by computing an elastic representation of the tube’s deformation with beam theory at each time step. This ela… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 20 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?