Chatbots hold the promise of revolutionizing education by engaging learners, personalizing learning activities, supporting educators, and developing deep insight into learners’ behavior. However, there is a lack of studies that analyze the recent evidence-based chatbot-learner interaction design techniques applied in education. This study presents a systematic review of 36 papers to understand, compare, and reflect on recent attempts to utilize chatbots in education using seven dimensions: educational field, platform, design principles, the role of chatbots, interaction styles, evidence, and limitations. The results show that the chatbots were mainly designed on a web platform to teach computer science, language, general education, and a few other fields such as engineering and mathematics. Further, more than half of the chatbots were used as teaching agents, while more than a third were peer agents. Most of the chatbots used a predetermined conversational path, and more than a quarter utilized a personalized learning approach that catered to students’ learning needs, while other chatbots used experiential and collaborative learning besides other design principles. Moreover, more than a third of the chatbots were evaluated with experiments, and the results primarily point to improved learning and subjective satisfaction. Challenges and limitations include inadequate or insufficient dataset training and a lack of reliance on usability heuristics. Future studies should explore the effect of chatbot personality and localization on subjective satisfaction and learning effectiveness.