Looking at the atomic level of biological activity, the electron spin may be considered a key parameter, governing fundamental biological processes. Spin states have a major role in defining the structure, reactivity, magnetic and spectroscopic properties of a molecule. In the last decades, there has been a growing interest in the use of magnetic fields (MF) to study their influence on different biological systems, considering their effect on electron spin energy levels and consequently on redox-related cellular changes. Different authors have studied the use of magnetic fields as potential antitumor agent as well as an adjuvant agent to chemotherapy and radiotherapy with promising results. Overall, the published data support the presence, in laboratory animals, of antitumor efficacy in many types of cancer including adenocarcinoma, breast cancer, melanoma and neuroblastoma. Those antitumor effects seem to be associated with no observable side effects or toxicity in animals or in humans. More studies are necessary, mainly at the clinical level, to understand the real potential of this atomic approach in improving availability of cancer therapy. In addition, this approach may contribute to fulfill a knowledge gap facing biomedical science today, the one between the atomic level and the cellular level.