Low dose UVB irradiation of dendritic cells (DC) dose-dependently decreases their allostimulatory capacity and inhibits alloreactive T cell proliferation. The reduction of the stimulatory capacity is not associated with a perturbation of CD28 costimulation. To examine the underlying mechanism, cell cycle analysis of T cells from cocultures with UVB-irradiated DC (UVB-DC) was performed, revealing no cell cycle arrest, but an increased number of apoptotic T cells in sub-G0 phase. We confirmed T cells to undergo apoptosis after coincubation with UVB-DC by TUNEL staining and DNA laddering. To analyze whether T cell apoptosis requires the Fas/Fas ligand (FasL) pathway, MLRs were performed with Fas-, FasL-deficient, and wild-type DC and T cells. No differences were found on comparison of wild-type DC with Fas-/FasL-deficient DC or T cells. Likewise, addition of a neutralizing anti-TNF-α mAb to cocultures could not overcome inhibition of T cell proliferation by UVB-DC, excluding involvement of the TNF-α/TNF-αR pathway. FACS analysis of CD69 and CD25 revealed no up-regulation on T cells cocultured with UVB-DC, suggesting a perturbation of early T cell activation. Analysis of UVB-DC by confocal microscopy demonstrated impaired filamentous actin bundling, a process critical for T cell stimulation. To investigate the functional relevance of these observations, time lapse video microscopy was performed. Indeed, calcium signaling in CD4+ T cells was significantly diminished after interaction with UVB-DC. In conclusion, UVBR of DC impairs their cytoskeletal rearrangement and induces apoptosis in CD4+ T cells by disruption of early DC-T cell interaction, resulting in a reduced Ca2+ influx in T cells.