Hybrid CMOS (hCMOS) x-ray framing cameras are a new and powerful detector option for experiments in the fields of Inertial Confinement Fusion (ICF) and High Energy Density Physics (HEDP). These digital cameras capture multiple images along a single line-of-sight with a time resolution as short as 1.5 ns and with high quantum efficiency. To manage the high data rate, an image sequence is acquired in a short burst of time and subsequently read out on a much longer time scale. The technology is well suited for operating in high radiation environments, including fusion ignition experiments. Diagnostics using hCMOS cameras are now deployed in experiments on major laser and pulsed-power ICF facilities around the world. Continued advances in microelectronics technologies will enable faster and more capable detectors well into the future. This paper reviews this detector technology with a focus on application to ICF and HEDP experiments.