Campylobacter jejuni, a major foodborne human pathogen, has become increasingly resistant to fluoroquinolone (FQ) antimicrobials. By using clonally related isolates and genetically defined mutants, we determined the fitness of FQ-resistant Campylobacter in chicken (a natural host and a major reservoir for C. jejuni) in the absence of antibiotic selection pressure. When monoinoculated into the host, FQ-resistant and FQ-susceptible Campylobacter displayed similar levels of colonization and persistence in the absence of FQ antimicrobials. The prolonged colonization in chickens did not result in loss of the FQ resistance and the resistance-conferring point mutation (C257 3 T) in the gyrA gene. Strikingly, when coinoculated into chickens, the FQ-resistant Campylobacter isolates outcompeted the majority of the FQ-susceptible strains, indicating that the resistant Campylobacter was biologically fit in the chicken host. The fitness advantage was not due to compensatory mutations in the genes targeted by FQ and was linked directly to the single point mutation in gyrA, which confers on Campylobacter a high-level resistance to FQ antimicrobials. In certain genetic backgrounds, the same point mutation entailed a biological cost on Campylobacter, as evidenced by its inability to compete with the FQ-susceptible Campylobacter. These findings provide a previously undescribed demonstration of the profound effect of a resistance-conferring point mutation in gyrA on the fitness of a major foodborne pathogen in its natural host and suggest that the rapid emergence of FQ-resistant Campylobacter on a worldwide scale may be attributable partly to the enhanced fitness of the FQ-resistant isolates.colonization ͉ gyrA mutation ͉ poultry A ntimicrobial resistance in bacterial pathogens has become a serious threat to public health. There is a general notion that the acquisition of drug resistance, particularly the resistance mediated by chromosomal mutations, entails a biological cost for pathogens, resulting in reduced fitness in the absence of antibiotic selection pressure (1, 2). However, evidence has accumulated that in vivo-selected or clinically derived isolates may develop compensatory mutations that reduce the fitness cost associated with antimicrobial resistance (3-7). Different environments (in vitro vs. in vivo) may select for different compensatory mutations and varied levels of restoration of fitness (8). Even without compensatory mutations, drug-resistant mutants may show little or no fitness cost (9). One important finding revealed by previous studies is that clinically derived drugresistant isolates display diverse fitness changes, with some showing a biological cost and others showing no cost or even enhanced fitness (4, 10). The retention of ecological fitness in resistant pathogens creates a significant barrier for the elimination of resistant organisms by natural selection.Campylobacter jejuni, a Gram-negative microaerobic bacterium, is a common causative agent of human enterocolitis (11). For antibiotic treatment of ca...