The authors propose a nanoplasmonic structure based on metal-insulator-metal (MIM) waveguides which consists of a 3 db power splitter and a side-coupled nanocavity placed between its two output ports. The proposed structure is analysed by the resonant theory and dispersion relation. Transmission spectra of the presented device are also extracted using the finite difference time domain method. Numerical simulations demonstrate that the structure operates as a band-stop filter in each output channel. Moreover, the resonance wavelengths can be tuned by adjusting the geometrical parameters of the nanocavity. Meanwhile, the authors developed the cavity and added an extra stub to it to append a new stopband to the output spectrum. Each resonance wavelength can be easily manipulated by changing the widths of the nanocavity and the added stub. In the end, by choosing two different lengths for the side-coupled cavities, the authors convert the power splitter into a wavelength division multiplexer. These introduced MIM, the authors proposed here, may have various meaningful applications in nanoscale high-density photonic circuits such as optical switches, logic plasmonic circuits and slow-light devices. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.